巴尔末公式的推导过程,高二物理巴尔末公式中n只能取3
巴尔末公式的推导过程
1、推导巴尔末系的里德伯公式,频率v=R*c{(1/2^2)-(1/n^2)}---巴尔末本人提出的公式是用波长表示,是里德伯公式的倒数乘光速. 首先,推导的前提是波尔提出的氢原子光谱的基本假设Vkn=(1/h)|Ek-En|------一式,Ek,En分别是原子发出或吸收光子前后的能量,Vkn是光子频率,h是普朗克常数。
2、 将氢原子能级公式(后面有推导)En=-(1/n^2){me^4/8(ε^2)h^2}带入一式,得:Vkn={me^4/8(ε^2)(h^3)c}(1/k^2-1/n^2),令常数R*c={me^4/8(ε^2)(h^3)c},k=2,则得证。
3、量子化轨道半径Rn,由ke^2/r^2=mv^2/r ①库伦力=向心力mvr=nh/2π ②玻尔理论轨道量子化公式两式联立消去速度v,并用Rn代替r表示第n条稳定轨道的轨道半径,可得上图公式。
4、最后,第一段的氢原子能级公式氢原子能量E等于电子动能与静电势能之和,以无穷远为0电势,则En=(1/2)mv^2-ke^2/Rn……①,由ke^2/Rn^2=mv^2/Rn可得 (1/2)mv^2=(1/2)ke^2/Rn,把此式与前面推出的Rn都带入①式,可以得到En=-(1/n^2){me^4/8(ε^2)h^2}注:库伦定律的常数k=1/4πε,ε是真空介电常数
高二物理巴尔末公式中n只能取3
1、巴尔末公式中n只能取3,4,5,6。
7、巴尔末公式是1885年由瑞士数学教师巴尔末(J.J.Balmer)提出的用于表示氢原子谱线波长的经验公式 ,当氢原子从高能级向低能级跃迁时产生的光谱,1/λ=R[1/(2^2)-1/(n^2)] R=1.1×10⒎m^-1 n=3,4,5…… 数学规律公式:(n+2)²/(n+2)²-4 其中λ是谱线的波长,B=3.6546×10-7m。
8、,是一个常数。
声明:图文来源于互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容, 请联系网站客服,一经查实,本站将立刻删除。